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Abstract

In recent years fMRI has become a pivotal tool in neuroimaging, providing insights
into brain activity by detecting changes associated with blood flow. At the same
time, the field has also dealt with uncertainty related to many known and unknown
effects of artifact in fMRI data and accurately separating signal from noise and
identifying meaningful patterns of brain activity. Traditional single-echo fMRI
methods are often limited by their susceptibility to artifacts and physiological noise.
This research uses multi-echo fMRI acquisitions in conjunction with a multi-echo
independent component analysis (ME-ICA) approach has been introduced as a means
to automatically distinguish functionally related BOLD signal components from
signal artifacts, with significant gains in sensitivity, statistical power, and specificity.
Moreover, the research explores the application of Finite State Machines (FSM) and
graph theory to multi-echo fMRI modeling of human brain resting state transitions.
The findings reveal that while all brain networks are functional connectivity, the
connectivity between the Default Mode Network and Motor Network, as well as
between the Motor Network and Gray Matter Network 1, are particularly notable
and highest. The results advance our understanding of neural connectivity and brain
dynamics, offering insights into cognitive and behavioral functions and contributing
to the development of targeted interventions and neuroimaging techniques.
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Chapter 1

Introduction

1.1 Background

Functional magnetic resonance imaging (fMRI) has become a pivotal tool in neu-
roimaging, providing insights into brain activity by detecting changes associated
with blood flow [7]. The recent introduction of simultaneous multi-slice (SMS)
acquisitions has enabled the acquisition of blood oxygen level dependent (BOLD)
functional magnetic resonance imaging (fMRI) data with significantly higher tempo-
ral sampling rates. In a parallel development, the use of multi-echo fMRI acquisitions
in conjunction with a multi-echo independent component analysis (ME-ICA) ap-
proach has been introduced as a means to automatically distinguish functionally
related BOLD signal components from signal artifacts, with significant gains in sen-
sitivity, statistical power, and specificity [26]. Also, ME-ICA identifies significantly
more BOLD-like components in the MESMS data as compared to data acquired with
a conventional multi-echo single-slice acquisition.

Finite State Machines (FSMs) offer a powerful framework for modeling brain state
transitions, capturing the dynamic nature of neural activity. FSMs can effectively
describe how the brain transitions between different states based on stimuli or
internal processes, providing insights into the underlying mechanisms of brain
function. By applying FSMs to neuroimaging data, researchers can map out the
sequence of brain states and predict future states, enhancing our understanding
of cognitive processes and neurological disorders [30, 39]. This approach has the
potential to reveal patterns in brain activity that are not evident through traditional
analysis methods, offering a new dimension of analysis in neuroscientific research.

This research explores the application of graph theory to multi-echo fMRI data
analyzed with ME-ICA, specifically focusing on the complex five-dimensional
datasets that include dimensions of space (x, y, z), time, and echo.
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CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

The primary challenge in fMRI data analysis lies in accurately separating signal from
noise and identifying meaningful patterns of brain activity. Traditional single-echo
fMRI methods are often limited by their susceptibility to artifacts and physiological
noise. This research aims to model the brain using a Finite State Machine (FSM) to
produce insights into how the brain transitions between different states. Applying
graph theory to multi-echo fMRI data serves this goal by potentially offering more
robust and precise analysis tools for neuroscientific research [7].

1.3 Research Objectives

The research aims to achieve the following objectives:

1. To investigate the efficacy of graph theory in analyzing multi-echo fMRI.
This involves applying graph theoretical methods to identify and model the
dynamic transitions between different brain states. By using a Finite State
Machine (FSM) to represent these transitions, the study seeks to provide
deeper insights into the functional connectivity and temporal dynamics of the
brain. The goal is to demonstrate that graph theory can enhance the precision
and robustness of fMRI data analysis, overcoming limitations associated with
traditional methods.

2. creating a finite state machine (FSM) with transition probabilities between ICA
component states in order to quantify brain state transitions.



Chapter 2

Literature Review

2.1 Functional Magnetic Resonance Imaging(fMRI)

2.1.1 Overview of fMRI principles and the BOLD signal:

Functional magnetic resonance imaging (fMRI) relies on the Blood Oxygen Level
Dependent (BOLD) contrast mechanism, which was first described by Ogawa et al.
(1990). The BOLD signal arises from changes in blood oxygenation levels, which
affect the magnetic properties of hemoglobin and, consequently, the MRI signal.
When neural activity increases in a region, the local blood flow and oxygenation
levels change, leading to detectable signal variations in the MRI data. This principle
allows researchers to map brain activity non-invasively [25].

Blood oxygenation level dependent (BOLD) functional MRI (fMRI) is widely used
to study brain activity based on hemodynamic signals [2, 9, 12, 18]. However,
recent studies show that fMRI data can be severely affected by artifacts [28]. These
artifacts relate to subject head motion, cardiac and respiratory effects, and hardware
[19, 21]. Studies on the effects of fMRI artifacts have brought into question many
of the compelling findings on brain function based on fMRI, for example, relating
to human brain development [17]. fMRI artifacts also reduce the statistical power
of fMRI studies and lead to spurious findings, which has been associated with a
crisis of confidence in fMRI research [11]. Thus, while in recent years the field
of fMRI research has both enjoyed advanced technology and expanded use, it
also deals with a deep discomfort related to many known and unknown effects
of artifact. Multi-echo (ME)-fMRI aims to enhance the fidelity of fMRI signals by
using a physically driven approach to determine whether the signals originate from
BOLD contrast or artifacts. This technique can be further optimized by combining
ME methods with emerging multi-band acceleration techniques, resulting in fMRI
strategies that offer both high resolution and fidelity. Overall, ME-fMRI involves
only a few relatively minor changes from standard fMRI acquisition techniques, yet
it enables analyses that significantly improve the quality of fMRI data [22].

3



CHAPTER 2. LITERATURE REVIEW 4

To date, the challenges in controlling fMRI artifacts have been met with generic
time series signal processing methods such as regression and frequency-restricting
bandpass filters [33]. Head motion artifacts, modeled from shifts in brain images
over time, are regressed out of fMRI time series. Recordings of physiology during
MRI are used to model cardiac and respiratory artifact regressors [19]. Spontaneous
activity is bandpass filtered to retain a narrow range of frequencies in order to
exclude hardware-related signal drifts and high-frequency noise [13]. Time series
models of noise and usually their temporal derivatives are linearly regressed out of
data. Despite the significant reduction in information in data after applying these
steps, it is now clear that much artifact remains. Of late, simple deletion of volumes
from fMRI datasets has been suggested [28]. This altogether means that artifact
signals are not characterized well enough by modeling artifact time courses and
regressing them out of data. This reality also suggests that artifacts are themselves
various and complex and may interact in unpredictable ways. At the heart of the
issue, however, is that standard fMRI approaches do not have a strong and general
ground truth to precisely relate signals to biophysical signal mechanisms versus
artifacts. Given information on how signals scale across the echo images of an
ME-fMRI experiment, however, valuable insight on the origins of fMRI signals in
BOLD contrast or artifact can be gained.

2.2 Multi-echo fMRI (ME-fMRI)

After excitation, standard fMRI uses 2-D echo planar imaging to acquire slice images
at a single TE, one slice at a time. At 3 T, this TE is usually 30 ms. ME-fMRI uses a
slightly different approach. After a normal excitation pulse, a slice image is acquired
at the earliest TE possible. Without exciting again, readout of another image of
the same slice is then acquired immediately afterward, at a longer TE, and so forth
up to the desired number of images and TEs. This happens for each slice of the
brain volume. Using this approach, in most cases, there is no cost for acquiring the
early TE, since standard fMRI pulse sequences are idle during the early period after
excitation. Acquiring extra images after the ‘standard’ intermediate TE is the main
cost. The important benefit is that the T2* signal decay can be modeled for each
voxel. This information can be used to relate signals to their generative physical
processes and can help in mitigating artifacts of many kinds.

Different voxels have different T2* decay depending on tissue properties and variation
of the local magnetic field. These properties can be parameterized based on an ME
experiment. ME images can be acquired using 3 T and 7 T MRI (Fig. 1).
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Figure 2.1: Multi-echo fMRI images from 3 T and 7 T. (A) 3 T multi-echo images
with in plane and multi-band acceleration with 2.5 mm isotropic resolution and
< 1 s TR. (B) 7 T multi-echo images with GRAPPA factor 3 and 2.5 mm isotropic
resolution, no multiband acceleration, giving TR=2.5 s [23].
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Multi-echo fMRI (ME-fMRI) enhances the quality of BOLD signals by acquiring
multiple echoes at different echo times (TEs) within each repetition time (TR). This
method significantly improves the separation of BOLD and non-BOLD components,
which is critical for accurate fMRI analyses. The approach leverages the differential
decay characteristics of these components across multiple echo times, which allows
for better differentiation between true neural signals and various artifacts, such as
those caused by physiological fluctuations, head motion, and scanner-related noise
[23].

ME-fMRI provides increased sensitivity and specificity in fMRI studies by utilizing
the additional information obtained from multiple echoes. This technique is
particularly effective in reducing the impact of artifacts on fMRI data, leading to
cleaner and more reliable results [26].

By capturing the signal decay at different echo times, ME-fMRI enables a more
precise identification of the BOLD signal, enhancing the overall quality of the fMRI
data [23].

One of the key benefits of ME-fMRI is its ability to improve data quality by providing
a clearer separation of signal and noise. This results in higher fidelity BOLD signals,
which are crucial for accurate brain mapping and functional connectivity studies.
Additionally, ME-fMRI's enhanced sensitivity and specificity contribute to more
robust findings in fMRI research, as it allows for the detection of subtle neural
activations that might be missed with traditional single-echo fMRI methods [26].
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2.2.1 Multi-echo data acquired at 7 T with 2.5 mm isotropic resolution

Figure 2.2: For multi-echo data acquired at 7 T with 2.5 mm isotropic resolution, (A)
TE images in arbitrary units, colorized. Tissue contrast changes with TE, but CSF
or gray matter compartments are unclear. (B) Calculation of T2* maps using 2 to 4
echo images. Using just 2 TE images to generate a T2* map is informative of CSF
localization, emphasized in ventricles (top pane) and in subarachnoid space (bottom
pane). However, checkering artifact is present. As more TEs are used for estimating
T2* maps, the influence of artifact on T2* estimates decreases. The precision of
anatomical localization of T2* values also increases when using more TE images for
parameter estimates (arrows) [26].
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In part A, TE images in arbitrary units, colorized. Tissue contrast changes with TE,
but cerebrospinal fluid (CSF) or gray matter compartments are unclear.

part B shows Calculation of T2* maps using 2 to 4 echo images. Using just 2 TE images
to generate a T2* map is informative of CSF localization, emphasized in ventricles
(top pane) and in subarachnoid space (bottom pane). However, checkerboard artifact
is present. As more TEs are used for estimating T2* maps, the influence of artifacts
on T2* estimates decrease. The precision of anatomical localization of T2* values
also increase when using more TE images for parameter estimates (arrows) [26].
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2.2.2 illustrates a representative case of using T2* maps

Figure 2.3: A representative case of using T2* maps to drive anatomical-functional
co-registration. (A) T2* map generated from multi-echo fMRI data. The T2* map is
thresholded to mask out CSF, by modeling CSF as having twice the T2* of gray matter.
This masked T2* map is segmented, to generate a T2* weight mask for driving
anatomical-functional segmentation. (B) T2* weighted co-registration uses local
Pearson correlation to estimate an affine warp. The weight maps show high intensity
in gray matter, including hippocampus. Native co-registration (i.e., rigid-body)
mis-registers subcortical areas. Standard affine warp based on global estimate over
scales the anatomical image [23].

The first image, part A, shows a T2* map generated from multi-echo fMRI data. This
map visualizes the variation in T2* values across the brain, providing a detailed
view of tissue properties. The second image presents the T2* map thresholded to
mask out cerebrospinal fluid (CSF), by modeling CSF as having twice the T2* of
gray matter. This step helps in enhancing the contrast between gray matter and
other tissues. The third image displays a gray matter (T2*) weight mask, segmented
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from the thresholded T2* map. This mask is used to generate a T2* weight map for
driving anatomical-functional segmentation.

The next set of images, part B, shows T2* weighted coregistration, which uses local
Pearson correlation to estimate an affine warp. The weight maps in this method
show high intensity in gray matter, including the hippocampus. The second image
presents native coregistration, which is a rigid-body method that often mis-registers
subcortical areas. The third image illustrates standard weighted coregistration,
where a standard affine warp based on a global estimate often overscales the
anatomical image.

Finally, Figure 3 demonstrates the process and benefits of using T2* maps for
improving the anatomical-functional co-registration in fMRI studies. The T2* maps
generated from multi-echo fMRI data provide a more accurate representation of
tissue properties, enhancing the segmentation and co-registration processes [23].

2.2.3 Combination of echo images from a multi-echo fMRI

Figure 2.4: Combination of echo images from a multi-echo fMRI experiment to
provide an optimally combined image. This figure demonstrates how multiple echo
times (TEs) can be used to enhance image quality by reducing artifacts [22].

The images at the top row (3T) show brain scans at different echo times: TE=15ms,
TE=32ms, and TE=48ms. Each image captures different aspects of the brain's signal
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decay. The final image in this row labeled "TE Comb." represents the optimally
combined image using data from the multiple echo times, which enhances the
overall image quality by mitigating artifacts and improving the signal-to-noise ratio.

The images at the bottom row (7T) show brain scans at different echo times: TE=8ms,
TE=23ms, and TE=37ms. Similar to the top row, these images capture various details
of the brain's signal decay at a higher magnetic field strength (7T). The final image
in this row labeled "TE Comb." represents the optimally combined image at 7T,
demonstrating improved image quality and reduced artifacts.

The combination of echo images from a multi-echo fMRI experiment helps in creating
an optimally combined image. This method addresses signal dropout artifacts that
occur due to short T2* in areas of high susceptibility. By weighting the combination
towards early TE signals in short T2* areas, the method significantly improves the
quality of the final image. The figure illustrates how using multiple echo times and
combining them effectively can enhance the fidelity of fMRI data, leading to clearer
and more reliable imaging results [22].

2.3 Classifying statistical components of fMRI datasets

TE-dependence and TE-independence models can be utilized to classify signal
components in fMRI identified using spatial independent component analysis (ICA)
[23]. ICA is an effective method that decomposes fMRI time series data into linearly
separable component maps and their corresponding time courses, represented as:

X (v, t) = A (v, c). w (c, t ) (Equation 1)

where X is a voxel-by-time matrix of time series, A is a voxel-by-component matrix of
spatial maps, and Wis a component-by-time matrix representing the modulation of
maps over time. ICA aims to find component maps that are statistically independent
from one another. One metric for estimating independence is negative entropy, used
in InfoMax ICA [5]. Another metric is kurtosis, the fourth statistical moment, used
in FastICA. This approach is computationally efficient and effective in identifying
independent components [5]. Consequently, FastICA is suitable for large datasets,
such as those from long-duration, high-temporal-resolution experiments, and is the
primary algorithm in the MELODIC tool within the FSL suite [35].

Applying MELODIC ICA to ME-fMRI data results in components that resemble
functional networks, such as the default mode network, and artifacts, like pulsation
(Fig. 5).
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Figure 2.5: Multi-echo independent components analysis (ME-ICA). (A) κ and ϱ
pseudo-F statistics representing component-level TE-dependence and independence,
of BOLD and artifact, respectively. (B) In the first three columns, the percent signal
changes across TEs, of network and artifact components in top and bottom rows,
respectively. The last two columns show parameter maps from fitting percent signal
changes to TE-dependence and TE-independence models, thresholded by goodness
of fit FR2* and FS0, respectively. (C) κ and ϱ spectra, for 7 T and 3 T data. [35].

Analyzing the component time series with unit variance against the different voxel
time series and TEs showed that network components exhibit statistically significant
linear scaling with TE, fitting well to the linear TE-dependence model. Conversely,
many artifact components show constant percent signal change with TE. The
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significance of the fits can be determined using F-statistics with degrees of freedom
( Necho,1), one for the TE-dependence model and another for the TE-independence
model, which are numerically comparable.

F-statistics are used to threshold the parameter maps for ΔR∗
2 and ΔS0. These maps

reflect the percent signal change from fitting time series points to either a slope or a
constant line, suggesting that TE-dependence and TE-independence model fitting of
ICA component amplitudes is a robust method for inferring the physical sources of
component signals.

Overall weightings for TE-dependence and TE-independence have been proposed
to characterize ICA components in fMRI datasets [23]. Simple averaging of FR2*
and FS0 over each component does not effectively differentiate network maps from
artifact maps, as most voxels are not significant. Therefore, a weighted average using
Z-maps from the ICA mixing matrix fitting is employed. The Z-weighted average of
FR2* values is called κ (Fig. 5a), and the same for FS0 values is called ϱ. The Scree
plot of κ values for all components is the κ spectrum. Plotting ϱ values in the same
order reveals the relative TE-dependence and TE-independence per component.

ICA components in ME-fMRI datasets cluster into two regimes: one with high κ and
low ϱ, and the other with low κ and/or high ϱ (Fig. 5c). High κ components include
cortical networks with high percent signal change and smaller magnitudes like
subcortical components of the putamen. Low κ components include artifacts such as
pulsatility, motion, and the sagittal draining vein. These findings indicate that ICA
can classify components into network and artifact groups based on TE-dependence
and TE-independence, suggesting that multi-echo fMRI data acquisition could be a
viable approach for ICA component classification.

These results highlight that ICA, despite being a statistical technique, can identify
biophysically specific modulations. Modeling ΔR∗

2 and ΔS0 of components identifies
two clear regimes separating networks and artifacts [23]. This framework is termed
multi-echo ICA (ME-ICA).

detailed explanations of each network are provided below to elucidate their roles
and significance:

• Default Mode Network (DMN)

The Default Mode Network (DMN) is a well-researched network in
neuroimaging, predominantly active when an individual is at rest and
not engaged in external tasks. This network is associated with self-
referential thoughts, memory retrieval, and planning for the future. Key
regions involved include the medial prefrontal cortex, posterior cingulate
cortex, precuneus, and lateral parietal cortex [31].

• Motor Network
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The Motor Network is integral for the planning, control, and execution of
voluntary movements. It encompasses regions such as the primary motor
cortex, supplementary motor area, and parts of the parietal lobe. This
network is essential for coordinating motor functions and integrating
sensory feedback to guide movements [6].

• Visual Network

The Visual Network is responsible for processing visual information
and includes regions like the primary visual cortex (V1) and other areas
within the occipital lobe. This network exhibits synchronous activity
even in the absence of visual stimuli, highlighting its role in visual
perception and readiness to process visual data [31].

• Right Executive Network (RExec)

The Right Executive Network plays a critical role in high-level cognitive
functions such as working memory, decision-making, and cognitive con-
trol. This network includes regions like the right dorsolateral prefrontal
cortex and right posterior parietal cortex, which are pivotal for attention
and executive processes [34].

• Left Executive Network (LExec)

The Left Executive Network, similar to its right counterpart, is involved
in executive functions such as working memory and cognitive control,
but is lateralized to the left hemisphere. Key regions include the left
dorsolateral prefrontal cortex and left posterior parietal cortex [15].

• Gray Matter Network 1 (GM1)

Gray Matter Network 1 (GM1) comprises regions within the gray matter
that are involved in a variety of cognitive and sensory processes. This
network reflects the general functionality of cortical regions responsible
for integrating sensory inputs and executing higher-order cognitive
functions [37].

• Gray Matter Network 2 (GM2)

Similar to GM1, Gray Matter Network 2 (GM2) consists of various
regions within the gray matter involved in different cognitive and sensory
functions. It underscores the distributed nature of cortical processing
and the integration of information across different brain areas [37].
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2.4 ME-ICA for fMRI Analysis

ME-ICA demonstrated how brain network components could be separated from
various artifacts without relying on spatial or temporal templates of expected
functional effects. Although ME-ICA was initially applied to human resting-state
fMRI data from 3T MRI, its broader applicability is apparent. TE-independent
component time series can be regressed out of fMRI time series to denoise both task
and resting-state activities since both arise from BOLD contrast [24]. This allows for
denoising within the same analysis framework, contrasting with the current need
for distinct pipelines for standard fMRI data of these paradigms. Consequently,
ME-fMRI and ME-ICA could simplify fMRI study workflows while maintaining
physical principles.

ME-ICA is applicable to any data with T2* signal fluctuations from BOLD contrast,
suggesting potential use in animal fMRI. Animal brain anatomy's lower morphologi-
cal variability compared to human anatomy makes it harder to distinguish artifacts
from signals of interest. Thus, automatically and systematically separating BOLD
and non-BOLD signals based on ME data is advantageous for animal fMRI. The ME
approach can also be applied to fMRI at different field strengths, such as 7T and
1.5T, which have varying associated artifacts but exhibit the same TE-dependence
and TE-independence mechanisms. Furthermore, both multi-band and single-band
fMRI can be analyzed using the same pipeline, positioning ME-fMRI and ME-ICA
as a general model and processing approach for fMRI time series.

A general fMRI model would not require many assumptions about brain activity or
artifact patterns in space or time. It would eliminate the need for conditioning steps
like band-pass filtering and spatial smoothing, which are typically applied to remove
drift and noise. This is especially beneficial for experiments where maintaining a
stable signal baseline is crucial, such as pharmacological fMRI or learning tasks.
Current techniques like ASL are often suboptimal due to their complexity and low
signal-to-noise ratio [1, 14, 23, 40].

The ME-ICA approach begins with isolating thermal noise, which is neither BOLD
signal nor non-BOLD artifact and typically follows Rician or Gaussian-like distri-
butions. This noise's prevalence and distribution are determined by the imaging
system [41]. Thermal noise and BOLD can overlap at low maximum sampling
frequencies, close to 0.3 Hz or lower, as seen in most fMRI studies to date [14].
Given that most fMRI acquisitions cannot achieve very high sample rates, time series
filtering is needed to remove thermal noise, which may also eliminate BOLD signals
informative for separating artifacts from networks.

In the ME-ICA framework, the proportion of thermal noise decreases with higher
field strength and increases with smaller voxel sizes. This approach effectively
separates all data into MR signals and Gaussian noise and then into BOLD and non-
BOLD sources using analyses of TE-dependence and TE-independence. ME-ICA
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has shown promising results in challenging applications like "resting-state" fMRI of
the rat brain using a Bruker 11.7 T preclinical MRI with a four-channel head coil,
demonstrating clear brain networks with minimal mixed artifacts [23].

ME-ICA also addresses susceptibility-related dynamic artifacts, which arise from
shifts in the magnetic field over time, such as due to chest motion during breathing.
These artifacts exhibit mixed T2* and S0 origins and tend to have higher κ values than
conventional TE-independent artifacts but lower than functional networks. ME-ICA's
ability to manage these artifacts suggests it is a robust method for distinguishing
between functional BOLD components and artifacts in fMRI data.

Recent studies have demonstrated ME-ICA's increased sensitivity in task-based
fMRI analyses. ME-ICA has outperformed conventional denoising and activation
mapping methods in terms of activation extent, magnitude, percent detected trials,
and effect size. These findings indicate that the general ME-ICA signal model is a
versatile and powerful approach for advanced denoising of both task-based and
resting-state fMRI data [20].

In summary, ME-ICA provides a general signal model and processing approach
for fMRI time series by effectively separating BOLD and non-BOLD signals while
managing thermal noise. This method enhances the accuracy and reliability of fMRI
studies, enabling clearer identification of brain networks and reducing the impact of
artifacts.

2.4.1 Practical Approaches and Techniques for Denoising fMRI Data

Despite the substantial benefits of ME-fMRI over standard fMRI, it is still not widely
adopted. For instance, the spiral and echo planar (SPEP) sequence by Wong et
al., available for several years on the GE platform, could flexibly implement ME-
fMRI as well as other techniques like echo relaxation imaging. The main practical
challenge has been that gradient echo image readout takes too long without in-plane
acceleration, causing most signals to dephase by the third TE. Acquiring images with
in-plane acceleration is crucial for making ME-fMRI more practical. This method
speeds up image readout so that three to five TEs of whole-brain signals can be
acquired within a standard TR of 2–3 seconds. Combined with recent developments
in multi-band imaging, significantly shorter TRs are achievable. The first widespread
use of multi-echo acquisition and analysis was based on the Siemens platform,
originating at the F.C. Donders Centre for Cognitive Neuroimaging (Nĳmegen,
Netherlands) Institute, and affiliated institutions. Despite many successful uses, the
spread of the multi-echo approach has been hindered by challenges in managing
the multi-TE time series. To address these practical issues, the analysis tool meica.py
was developed and distributed to streamline multi-echo analysis, handling all stages
of basic and ICA-based ME analysis.
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The design intent of meica.py is to simplify ME-fMRI processing, allowing “raw”
ME-fMRI data to be input and fully processed BOLD time series and component
maps to be output. The pipeline is flexible, enabling analysis with or without an
anatomical image, and in standard space or not. It is also open-source, based on
the GPL-licensed AFNI and Python tools for open science (available at available at
www.bitbucket.org/prantikk/meica.

There are two main steps in this pipeline. Meica.py itself writes a shell script for
preprocessing using AFNI tools. This mostly adapts basic fMRI preprocessing but
applies it with TE properties in mind and is designed to keep multi-TE time series
aligned. For example, early TE data is used for rigid body motion correction based
on having the highest signal intensity across tissues. Based on a sample of ME
images from a short series of TRs, optimally combined signals are used to create a
mask image by a variant of the BET method. Local Pearson correlation of T2* with
the anatomical drives functional-anatomical coregistration [22].

The parameters of motion correction and alignment are combined in one matrix
and applied to all TE time series. Band-pass filtering and spatial smoothing are
not recommended but are supported. The script then calls another code, tedana.py,
which implements several ME analyses such as T2* model fitting and ICA, based on
the equations in this manuscript. These functions are built with routines from the
Numpy and Scipy Python toolkits. These implementations are efficient by passing
computationally intense steps to optimized low-level and parallelized linear algebra
codes built into Python toolkits. Tedana.py first does ME-PCA to isolate signals
for ICA, by default on optimally combined data. It then finds ICA components
using FastICA, implemented with Numpy and Scipy routines. Each component is
then processed to compute κ and ϱ, and other accessory component metrics. These
additional metrics aid in capturing specific artifacts such as those from in-plane
acceleration and draining veins. Finally, components are classified into BOLD
and non-BOLD groups and constituted into time series for various processing
approaches.

ME-ICA writes three different time series datasets that vary by how strictly BOLD
versus non-BOLD signals are retained, with a rationale based on end use (Fig.
6). First are the T2*-weighted “optimally combined” time series, which can be a
drop-in replacement for standard fMRI data while benefitting from signal-to-noise
ratio boosts of the T2* weighted combination. This data represents all BOLD and
non-BOLD signals, and so benefits from some denoising such as motion regression
to be useful in most cases.

https://www.bitbucket.org/prantikk/meica
https://www.bitbucket.org/prantikk/meica
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Figure 2.6: Pipeline of component and time series outputs from ME-ICA. Key
time series from multi-echo fMRI acquisition and ME-ICA analysis: (A) Time
series of "middle" echo, can be used for standard fMRI analysis. (B) Time series
after combining echoes, can be used for standard analysis. These time series have
enhanced functional contrast and have compensated for dropout artifact. (C) Time
series with non-BOLD artifact removed, but retaining Gaussian-like noise. (D) Time
series from only BOLD components, suitable for studies of BOLD dynamics [22].

The second time series has non-BOLD and mid-κ ICs removed but retains i) thermal
noise, ii) low variance ICs, and iii) ignored ICs. This data, called ME-DN, removes
a large portion of nuisance variance by removing a small number of components,
far fewer than the number of time points. Good denoising is achieved with a
relatively small loss in degrees of freedom. The ME-DN time series are the most
efficiently denoised from ME-ICA and are well-suited to voxel-wise general linear
modeling (GLM) at the subject level. This is because ME-DN data optimize the
balance of low noise and high degrees of freedom, which is crucial for finding
significant effects on the basis of T-statistics. However, the number of degrees of
freedom does vary across ME-DN datasets, so efforts should be made to account
for this variability in subject-level and group-level analyses to avoid inflated test
statistics and false-positive findings. In general, the ME-DN data are a safe option
for good denoising with many retained degrees of freedom and are the main choice
for subject-level model fitting if the software does not support setting degrees of
freedom manually (Fig. 7).
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Figure 2.7: Cortical dynamics captured in high-κ time series. Using multi-echo
multi-band fMRI sequence with in-plane acceleration factor (GRAPPA) 3, and multi-
band factor 3, leading to 2.5 mm isotropic resolution sampled at TR=0.87 s. In
evolution over about 10 s, the transition between two states of spontaneous activity
is seen.

The third option is BOLD time series recomposed only from BOLD components.
These time series, called the high-κ time series, have degrees of freedom equal to the
number of BOLD components. High-κ data minimizes the contribution of Gaussian
noise, which is a special property. If these data are played as a video, they can
show dynamic cortical waves of activity. These data are also suitable for univariate
task-based GLM analyses. However, T-statistics are not valid at the subject level if
degrees of freedom are not carefully counted, which is not possible in most software.
Nevertheless, GLM fit coefficients (β) computed from this data can be passed to
group analysis such as using T-test or ANOVA without special considerations (Fig.
8).
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Figure 2.8: Detection of sigmoidal BOLD effect after separating BOLD from non-
BOLD signals. Raw fMRI from primary visual cortex during slow visual contrast
change does not show slow BOLD change. Conventional time course filtering does
not expose a slow varying effect. After ME-ICA, BOLD signal shows sigmoidal effect
that localizes to visual cortex. Non-BOLD signal shows linear drift consistent with
usual fMRI artifact [16].

Other types of task activity that can be analyzed with ME-ICA include paradigms
with very long blocks or other types of low-frequency patterns, with epochs on the
order of minutes. This is not possible with single-echo fMRI due to the requirement
of a high-pass filter to remove artifactual drift, which is non-specific and removes
BOLD-related low-frequency fluctuations as well. The removal of drifts in multi-echo
fMRI can be done by removing non-BOLD signals, making it possible to detect
low-frequency activity related to BOLD contrast. More complex BOLD responses,
such as sigmoidal activations, can also be detected [16].
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evoked many such types of activity using visual stimuli with varying visual contrast.
These activations were isolated and mapped based on ME-DN time series from
ME-ICA. For several types of temporally complex activation models with very-low-
frequency components, including sigmoids, activations localized well to the visual
cortex, as expected. The possibility of mapping ultra-low frequency fluctuations
suggests an opportunity for future studies on the effects of drugs or learning to
utilize the enhanced sensitivity to corresponding low-frequency signal changes.

2.5 Graph Theory in Neuroimaging

Graph theory is a branch of mathematics that studies the properties and relationships
between nodes (or vertices) and edges (or links) that connect them. This theoretical
framework is particularly powerful for analyzing complex systems, including the
brain's structural and functional networks. In neuroimaging, graph theory provides
a quantitative approach to understanding the brain's connectivity patterns and their
implications for cognitive processes and neurological diseases.

2.5.1 Fundamentals of Graph Theory

Graph theory allows researchers to model the brain as a network where nodes
represent brain regions and edges represent the connections between them. This
representation enables the analysis of various properties of brain networks, such
as connectivity strength, efficiency, and resilience. Key concepts in graph theory
include:

• Nodes (Vertices): Represent distinct brain regions or functional units.

• Edges (Links): Represent the connections or interactions between nodes, which
can be structural (anatomical) or functional (based on correlated activity).

• Degree: The number of connections a node has. Nodes with high degrees are
considered hubs and play crucial roles in network connectivity.

• Path Length: The shortest path between two nodes. Shorter path lengths
indicate more efficient communication.

• Clustering Coefficient: Measures the degree to which nodes tend to cluster
together. High clustering is often associated with specialized processing
regions.

• Modularity: The extent to which a network can be divided into modules or
communities with dense intra-connections and sparse inter-connections [10].
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2.5.2 Using Graph Theory to Quantify Resting-State Connectivity

Graph theory has been instrumental in quantifying resting-state connectivity in the
brain. Resting-state fMRI (rs-fMRI) measures spontaneous brain activity, providing
insights into the brain's functional organization during rest. By applying graph theory
to rs-fMRI data, researchers have identified key network properties such as hubs,
modularity, and efficiency that characterize the brain's intrinsic connectivity. Graph
theoretical measures like degree centrality, clustering coefficient, and path length
have been used to quantify how brain regions (nodes) are interconnected (edges)
and how these connections form complex networks. For instance, degree centrality
helps identify crucial brain regions that act as hubs, facilitating communication
across the network. Clustering coefficient measures how nodes form tightly knit
clusters, indicative of specialized processing regions, while path length assesses the
efficiency of information transfer across the brain [10, 32].

Studies have demonstrated that resting-state networks (RSNs) exhibit small-world
properties, which balance high local clustering and short path lengths, enhancing
both specialized and integrative processing [10, 32]. Graph theoretical analysis of
rs-fMRI data has also revealed distinct connectivity patterns associated with various
cognitive functions and neurological conditions [38]. For instance, alterations in
network properties have been linked to disorders like schizophrenia, Alzheimer's
disease, and autism spectrum disorders, providing potential biomarkers for diagnosis
and treatment [36, 8, 42]. These analyses have shown that in Alzheimer's disease,
there is a disruption in the efficiency of brain networks, whereas in schizophrenia,
there is often a reduction in the global connectivity of the brain network. Overall, the
integration of graph theory with rs-fMRI offers a robust framework for understanding
the complex architecture and functional dynamics of the brain.
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Methodology

3.1 Dataset

Data were obtained from 20 subjects, collected from consenting neurotypical subjects
with standard inclusion/exclusion criteria (English speaking, right-handed, no
history of neurological or psychiatric illness) and the protocol was approved by the
Cambridge IRB (LREC 11/EE/0198). BOLD data were collected with subjects' eyes
open at rest, looking at a white screen. The data was sourced from the OpenNeuro
dataset, which includes multi-echo BOLD fMRI scans. The dataset consists of 4
echoes of a single 9.84-minute multi-echo BOLD run. [27]

Subject Information

• Body Part Examined: Head

• Magnetic Field Strength: 3 Tesla

• Manufacturer: Siemens

• Model Name: Trio

• Receive Coil Name: 32-Channel Head Coil

• Task Name: Rest

fMRI Acquisition Parameters

• Echo Time (TE): 12, 28, 44, and 60 ms

• Number of Echoes: 4

• Repetition Time (TR): 2.47 seconds

• Flip Angle: 78 degrees

• Pixel Spacing: 3.75 mm (in-plane), 4.4 mm (slice thickness)

23
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• Pixel Bandwidth: 1698 Hz/Px

• Parallel Reduction Factor In-Plane: 3

• Slice Thickness: 4.4 mm

• Spacing Between Slices: 4.84 mm

• Slice Timing: [1.235, 0.000, 1.317, 0.082, 1.399, 0.165, 1.482, 0.247, 1.564, 0.329,
1.647, 0.412, 1.729, 0.494, 1.811, 0.576, 1.894, 0.659, 1.976, 0.741, 2.058, 0.823,
2.141, 0.906, 2.223, 0.988, 2.305, 1.070, 2.388, 1.153 seconds]

3.2 Multi-Echo denoising

Effective denoising is crucial for the success of this project, as it is imperative to
remove all non-BOLD components from the fMRI data before constructing the final
state machine of the brain. This process ensures that the data used for analysis
accurately reflects the neural activity of interest, free from artifacts and noise that
could otherwise compromise the integrity of the results.

In this research, a new and updated version of Multi-Echo Independent Component
Analysis (MEICA) was used for denoising functional MRI (fMRI) data. This process
is facilitated by the tedana package, developed by the MEICA group, which requires
Python 3.6+ [29]. The script, written in tcsh, utilizes afni_proc.py to preprocess and
denoise the fMRI data.

3.2.1 Explanation of Denoising Methods

1. Despiking: The despike block removes transient high-intensity artifacts (spikes)
from the fMRI time series, which can result from sudden head movements or
scanner noise.

2. Time Shifting (Slice Timing Correction): The tshift block corrects differences
in slice acquisition times by temporally aligning the slices within each volume.
This is achieved using sinc interpolation with the -wsinc9 option.

3. Alignment (Motion Correction): The align block adjusts the fMRI volumes to
correct for head motion across the time series. The alignment options -cost
lpc+ZZ -giant_move -check_flip ensure robust correction, accommodating
large movements and checking for left-right flips.

4. Normalization to Template (Talairach Transformation): The tlrc block aligns the
functional data to the MNI152 template (MNI152_2009_template_SSW.nii.gz),
facilitating comparison across subjects and studies.
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5. Volume Registration: The volreg block performs volume registration,
aligning each time point to the volume with the minimum outlier fraction
(MIN_OUTLIER). This ensures that the data is consistently positioned in
space.

6. Masking: The mask block creates a brain mask to isolate brain tissue from
non-brain areas, improving the accuracy of subsequent analyses.

7. Combining Echoes: The combine block integrates multi-echo data using the
optimal combination (OC) method. This enhances the signal-to-noise ratio
(SNR) by combining the echoes weighted by their respective SNRs.

8. Spatial Smoothing: The blur block applies a small Gaussian blur (FWHM =
3mm) to the data to improve SNR while preserving spatial resolution.

9. Intensity Normalization: The scale block normalizes the voxel time series to a
common scale, typically converting them to percent signal change.

10. Regression: The regress block includes several important steps:

• Motion Regression: Removes motion-related variance by including mo-
tion parameters as regressors.

• Censoring: Excludes time points with excessive motion (${cen_motion} =
0.2) or outliers (${cen_outliers} = 0.05).

• Trend Removal: Uses polynomial detrending to remove low-frequency
drifts and high-frequency noise.

• Blur Estimation: Estimates the smoothness of the residuals and the data,
informing the statistical analysis.

11. Radial Correlation: The radial_correlate_blocks option computes the correla-
tion between each voxel's time series and the mean time series within a radial
sphere, enhancing the detection of functional connectivity patterns.

By employing these comprehensive denoising techniques, the MEICA approach
ensures that the resulting fMRI data is of high quality, with reduced noise and
artifacts, allowing for more accurate and reliable analysis of brain function [29].

3.3 Identifying Resting-State Networks (RSNs) Using Independent Com-
ponent Analysis(ICA)

After converting the cleaned fMRI data to NIfTI format, the next step involved
running MELODIC (Multivariate Exploratory Linear Optimized Decomposition
into Independent Components) in FSL (FMRIB Software Library). MELODIC is a
tool for performing Independent Component Analysis (ICA) on fMRI data, which is
used to identify resting-state networks (RSNs) within the brain [4].
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MELODIC decomposes the fMRI data into spatially independent components
(ICs), which correspond to different functional networks and artifacts. These
independent components represent distinct patterns of brain activity that are
statistically independent from each other. Some of these components correspond
to RSNs, such as the Default Mode Network, Visual Network, and Sensorimotor
Network. This process allows researchers to separate meaningful brain activity from
noise and other confounding signals. The output of MELODIC includes maps of
the identified components and their associated time courses, which are critical for
subsequent analyses [3].

The identified RSNs, such as the Default Mode Network, Visual Network, and others,
were used in subsequent analyses to study brain connectivity and function. By
using MELODIC in FSL, these networks were robustly and efficiently identified and
analyzed, providing insights into the brain's intrinsic connectivity [35]. MELODIC
produced spatial maps and time courses for each independent component.

In the next step the components were identified corresponding to resting-state
networks based on their spatial patterns and temporal characteristics, a rigorous
selection process was undertaken due to data quality issues. Out of the initial 20
subjects available, only 6 were deemed suitable for further analysis. For each of
these selected subjects, a single appropriate component was chosen for each network.
The networks analyzed encompassed the Default Mode Network, Motor Network,
Visual Network, Right Executive Network, Left Executive Network, Gray Matter
Network 1, and Gray Matter Network 2.

3.3.1 Component Map of resting-state networks

The resting-state networks (RSNs) identified for each subject are illustrated in the
figures below. Each network is depicted to demonstrate the spatial patterns and
temporal characteristics across the selected subjects.
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Figure 3.9: Default Mode Network.

Figure 3.10: Motor Network.
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Figure 3.11: Visual Network.

Figure 3.12: Right Executive Network. This network in Subject 3 has some missing
values, so it is excluded from Subject 3 in the next analysis.
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Figure 3.13: Left Executive Network. This network in Subject 3 has some missing
values, so it is excluded from Subject 3 in the next analysis.

Figure 3.14: Gray Matter Network 1.
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Figure 3.15: Gray Matter Network 2.

3.3.2 Creating Spatial Masks and Isolating Time Series

In the final step of data preprocessing and analysis for the resting-state networks
(RSNs), a detailed procedure was undertaken to ensure the accuracy and robustness
of the results. Initially, the independent components (ICs) obtained from the
MELODIC output were loaded alongside the original fMRI data, which was stored
in NIfTI format. The ICs represented spatially independent components derived
from the multi-echo fMRI data, essential for identifying the different networks
within the brain.

To begin, the indices corresponding to various networks were defined. These indices
included the Default Mode Network (DMN), Motor Network, Visual Network, Right
Executive Network, Left Executive Network, and two Gray Matter Networks. Each
index was associated with a specific component, allowing for targeted analysis of
these networks.

Subsequently, a visualization of the independent components was conducted to
verify the spatial patterns and ensure that the identified components accurately
represented the expected brain networks. This step was crucial for validating the
integrity of the data before proceeding with further analysis.

The next critical phase involved creating spatial masks for each component. This
was achieved by applying a z-score transformation to the component maps. Z-score
thresholding was utilized, with a threshold of z > 5 applied to all voxels. This
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thresholding process helped isolate the significant regions within each component,
effectively creating a mask that highlighted the areas of interest corresponding to
each network.

This phase was meticulously executed for each of the six subjects, ensuring com-
prehensive and precise application across the dataset. The masks for each Network
component and each subject are illustrated in the figures below. Also, subject 3 is
leaved out from Right Executive Network and Left Executive Network because it
was missing such networks.

Figure 3.16: Brain Network Component Mask for Subject 1.

In the Masks figures, Component 0 to component 6 refer to Default Mode Network,
Motor Network, Visual Network, Right Executive Network, Left Executive Network,
Gray Matter Network 1, and Gray Matter Network 2 respectively.
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Figure 3.17: Brain Network Component Mask for Subject 2.

Figure 3.18: Brain Network Component Mask for Subject 3.
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Figure 3.19: Brain Network Component Mask for Subject 4.

Figure 3.20: Brain Network Component Mask for Subject 5.
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Figure 3.21: Brain Network Component Mask for Subject 6.

Subject 3 is excluded from the Right Executive Network and Left Executive Network
analysis due to missing data. Once the spatial masks were established, they were
used to isolate the time series from the original fMRI data that were unique to each
component mask. By applying these masks to the original data, the time series
specific to the regions of interest were extracted. The extracted time series were then
averaged across all voxels within the mask to obtain a representative time series for
each network component.

To enhance the quality of the time series data, a smoothing process was applied.
Gaussian filtering was employed to reduce noise and improve the signal-to-noise
ratio, resulting in a clearer and more interpretable time series. This smoothing step
was essential for ensuring that the temporal characteristics of the networks were
accurately captured.

Finally, the smoothed time series for each network component were plotted and
used for further analyses.
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Figure 3.22: Time series for all network components of Subject 1.
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Figure 3.23: Time series for all network components of Subject 2.
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Figure 3.24: Time series for all network components of Subject 3. Subject 3 is
excluded from the Right Executive Network and Left Executive Network analysis
due to missing data.
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Figure 3.25: Time series for all network components of Subject 4.
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Figure 3.26: Time series for all network components of Subject 5.
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Figure 3.27: Time series for all network components of Subject 6.
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In the above figures intensity reflects the level of blood-oxygen-level-dependent
(BOLD) signal, which is an indirect measure of neural activity. This comprehensive
approach allowed for a detailed examination of the temporal dynamics of the
identified resting-state networks, providing valuable insights into the functional
connectivity and activity patterns within the brain.

By meticulously following these steps, the final analysis ensured that the resting-
state networks were accurately identified and characterized, paving the way for
subsequent analyses and interpretations of the data like Creating FSM (Final State
Machines) using graph theory.

3.4 Finite state machine construction

In this part, the methodology for determining when the brain transitions between
different Independent Component Analysis (ICA) components is elaborated, along
with the subsequent construction of a Finite State Machine (FSM) to model these
transitions. This analysis provides insights into the dynamic functional connectivity
of the brain.

The process began by identifying the point at which the brain switches from one
ICA component to another. This was achieved by analyzing the amplitude of
the smoothed signal for each component over time. At any given time point, the
component with the highest amplitude was considered the 'active' component. A
transition was defined to occur when the amplitude of another component surpassed
that of the currently active component. For each subject, this transition identification
process was meticulously carried out [4].

Once the transitions were identified for each subject, an FSM with seven states was
constructed. Each state in the FSM represented one of the ICA components. The
transitions between states were quantified by counting the number of times the brain
switched from one component to another. The probability of transitioning between
different states was calculated by dividing the number of transitions between any
two states by the total number of transitions observed [23].

To ensure comprehensive analysis, the transition probabilities were computed for
each subject individually. The following steps were undertaken:

1. Maximum Amplitude Component Identification: For each time point, the
component with the highest smoothed amplitude was identified, marking the
'active' component at that time.

2. Transition Counting: A dictionary was initialized to count the transitions
between different states. For each pair of consecutive time points, if the active
component changed, a transition was recorded in the dictionary.
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3. Transition Probability Calculation: The total number of transitions was
summed, and the transition probabilities were computed by dividing the
count of each transition by the total number of transitions.

4. Summation of Probabilities Across Subjects: The transition probabilities were
calculated separately for each subject. These probabilities were then summed
across all subjects to compute the mean transition probabilities.

5. Calculation of Mean Probabilities: The mean transition probabilities were
calculated by dividing the summed probabilities by the total number of subjects,
which in this study was six, ensuring that the averaged probabilities accurately
represented the transition dynamics across all subjects [35].

6. Normalization of Probabilities: The summed probabilities for each state were
normalized to ensure that the sum of probabilities for outgoing transitions from
any given state equaled one. This was achieved by dividing each transition
probability by the total sum of outgoing probabilities for the respective state
[20].

3.4.1 Mathematical Equations to Calculate Transitions and Their Probabilities

To calculate transitions and their probabilities from fMRI data, the following steps
are employed:

1. Identifying the Active Component at Each Time Point :Let At represent
the amplitude of the smoothed signal for each component at time t. The active
component at time t is defined as the component with the maximum amplitude:

Active_Componentt = arg max
k

{Akt}

where k represents the index of the ICA components.

2. Counting the Transitions Between Components :For each consecutive pair of
time points, a transition between the active components is identified as follows:

Transitioni, j =
T −1
t=1

δActive_Componentt, i · δActive_Componentt 1, j

where:

• δx, y is the Kronecker delta, which equals 1 if x = y and 0 otherwise.

• T is the total number of time points.
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3. Calculating Transition Probabilities : The transition probability from state i to
state j is calculated as:

Pi → j =
Transitioni, j

N
k=1 Transitioni, k

where N is the total number of states (in this case, 7).

4. Summation of Probabilities Across Subjects :Let Psi → j represent the
transition probability for subject s. The total probability across all subjects is given
by:

Ptotali → j =
S

s=1
Psi → j

where S is the total number of subjects.

5. Calculation of Mean Probabilities :The mean transition probability across all
subjects is calculated as:

Pi → j =
Ptotali → j

S

6. Normalization of Probabilities :Finally, the transition probabilities are normal-
ized such that the sum of outgoing probabilities from each state equals 1:

Pi → j =
Pi → j

N
k=1 Pi → k

where Pi → j represents the normalized transition probability from state i to state j.

3.5 Graph construction

The final normalized transition probabilities were then visualized using a directed
graph. Each node in the graph represented one of the seven ICA components,
corresponding to distinct resting-state networks or brain regions identified during
the fMRI analysis. The edges in the graph indicated the transitions between these
states, with the direction of the edge showing the direction of the transition, reflecting
the dynamic nature of brain state changes over time [35, 23].

Each edge was annotated with a weight corresponding to the transition probability,
which was calculated by counting the number of transitions between each pair of
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components and normalizing them. This dual annotation of edge weights, showing
both outgoing and incoming transition probabilities, provided a comprehensive
view of the transition dynamics, capturing both the likelihood of leaving a state and
the likelihood of entering a state [4, 23].

To create a visual representation of the graph, a directed graph plotting tool was
used. The layout was chosen to enhance readability and interpretability, with
options such as circular or hierarchical layouts helping to distinguish the nodes
and the direction of transitions clearly. This visualization allowed for an intuitive
understanding of the brain's functional dynamics, identifying more stable states
with higher self-transition probabilities and more transient states that frequently
transitioned to other states [35, 20].

The detailed analysis identified the most likely transitions between different ICA
components and quantified the transition probabilities, offering significant insights
into the brain's functional dynamics. By examining the nodes and edges, key states
acting as hubs that facilitate transitions between multiple other states were identified.
This comprehensive approach highlighted the overall architecture of brain state
transitions, shedding light on how different regions of the brain interact over time
[35, 20].

The resulting FSM and transition probability graph served as powerful tools for
understanding the complex interplay of neural activity in different brain regions.
They have practical applications in both research and clinical settings, such as
studying the effects of different conditions or interventions on brain connectivity,
identifying biomarkers for neurological disorders, and developing targeted therapies
that modulate specific brain state transitions. The creation of the final state machine
encapsulated the transition dynamics and provided a comprehensive model for
interpreting the functional state changes within the brain, significantly enhancing
the understanding of brain functional connectivity and activity patterns [35, 20].



Chapter 4

Experimental Results

In this chapter, average time the brain spent in each network, also, the result of brain
transitions between different Independent Component Analysis (ICA) components
with Finite State Machine (FSM) in graph form is shown.

4.1 Average time the brain spent

4.1.1 Average time the brain spent in each network and each subject

The analysis of average time spent in each brain network across the six subjects
reveals notable variations in network engagement, reflecting individual differences
in cognitive processing and brain function. Gray Matter Network 1 shows the
highest engagement in multiple subjects (Subjects 1 and 5), indicating its significant
role in cognitive and sensory functions. The Default Mode Network (DMN) also
demonstrates substantial activity across several subjects (Subjects 1, 4, and 5),
highlighting its importance in rest and introspective thought. The Motor Network
shows the highest engagement in Subjects 3 and 6, reflecting its critical role in motor
activities. In contrast, the Visual Network exhibits moderate to high activity in
subjects like 3 and 6, suggesting varying degrees of visual processing. Executive
networks (Right and Left) show moderate engagement across all subjects, with
notable activity in Subject 5's Right Executive Network, indicating involvement in
high-level cognitive tasks. Gray Matter Network 2 shows significant engagement in
Subject 2, underscoring its role in cognitive functions. Overall, while each subject
demonstrates unique patterns, common trends such as the prominence of Gray
Matter Networks, the DMN, and the Motor Network can be observed, emphasizing
the diverse yet overlapping functional roles of these brain networks (Fig. 28)..
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Figure 4.28: Average time spent in each brain network for each subject.
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4.1.2 Average Time Spent Across All Subjects

Figure 4.29: Average time spent across all subjects.

In the analysis of the average time spent in each brain network across all subjects,
several key insights emerge. The Motor Network shows the highest average time
spent at approximately 0.21, highlighting its predominant role and engagement
during the study. The Default Mode Network follows with an average time of around
0.18, reflecting its involvement in various brain functions such as mind-wandering
and self-referential thinking.

The Gray Matter Network 1 and the Left Executive Network both exhibit an average
time of 0.14, indicating significant engagement in cognitive processes. The Visual
Network, with an average time of 0.13, shows substantial activity, suggesting its
critical role in visual processing tasks. The Gray Matter Network 2, with an average
time of 0.12, indicates moderate activity. The Right Executive Network has the lowest
average time spent at around 0.11, suggesting a relatively lower level of activity
compared to the other networks.
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4.2 Finite State Machine (FSM) in graph form

4.2.1 Directed Graph for Each Subject

In this part, the result of brain transitions between different ICA components with
Finite State Machine (FSM) in graph form separately for each subject is shown.

According to below Figures the directed graph depicted in the figure represents the
normalized transition probabilities between the Independent Component Analysis
(ICA) components, effectively illustrating the dynamic interactions and functional
connectivity patterns among different brain states. Each node in the graph corre-
sponds to one of the seven ICA components, while the edges signify the transitions
between these states, annotated with their respective probabilities. two of the highest
transition probabilities for each node are explained in the paragraph below.
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Figure 4.30: Finite State Machine of network component of Subject 1.
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Figure 4.31: Finite State Machine of network component of Subject 2.
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Figure 4.32: Finite State Machine of network component of Subject 3.
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Figure 4.33: Finite State Machine of network component of Subject 4.
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Figure 4.34: Finite State Machine of network component of Subject 5.
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Figure 4.35: Finite State Machine of network component of Subject 6.

Upon analyzing the transition patterns across six subjects, several key trends and
variations become evident. The Default Mode Network (DMN) consistently shows
significant outgoing transitions to other networks, particularly the Motor and
Executive Networks, indicating its central role in brain connectivity. For instance,
in Subject 1, the DMN prominently transitions to Gray Matter Network 2, while
in Subject 2, it shows strong transitions to Gray Matter Network 2 and the Left
Executive Network. The Motor Network frequently transitions to Visual and Gray
Matter Networks across subjects, highlighting its involvement in both sensory-
motor functions and cognitive processes. In Subject 3, the Motor Network shows
the highest outgoing transitions to Visual Network and Gray Matter Networks,
underscoring its role in integrating motor and sensory information. The Visual
Network, although showing varying levels of activity, often transitions to the DMN
and other executive networks, suggesting its contribution to integrating visual
processing with higher cognitive functions. The Right and Left Executive Networks
exhibit notable transitions to the DMN and other executive networks, reflecting their
roles in high-level cognitive tasks. For example, Subject 4's Right Executive Network
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predominantly transitions to the DMN, indicating its involvement in executive
functions and resting-state activity. Gray Matter Networks 1 and 2 generally show
transitions to and from executive and sensory-motor networks, emphasizing their
integrative roles in various cognitive and sensory processes. Overall, the analysis
reveals both commonalities and individual differences in network transitions, with
the DMN, Motor, and Executive Networks playing central roles in brain connectivity
across subjects.

4.2.2 Average Directed Graph Across All Subject

Figure 4.36: Finite State Machine of network component across all subjects.

The analysis of transition probabilities between brain networks reveals distinct
patterns of connectivity. The Default Mode Network receives the highest incom-
ing transitions from the Visual Network (0.29) and shows the highest outgoing
transitions to the Motor Network (0.24), indicating a strong flow of activity from
visual processing to introspective and motor functions. The Motor Network is
significantly influenced by Gray Matter Network 1, receiving incoming transitions
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with a probability of 0.27. It predominantly transitions to Gray Matter Network 1
with an outgoing probability of 0.34, highlighting its role in coordinating motor
activities with gray matter regions.

For the Visual Network, the most significant incoming transitions come from the
Motor Network (0.31), showing a strong link between visual and motor functions.
It primarily transitions to the Default Mode Network with a probability of 0.29,
connecting visual stimuli with the brain's default state.The Right Executive Network
receives its highest incoming transitions from the Default Mode Network (0.23)
and shows the highest outgoing transitions back to it (0.21), indicating a reciprocal
relationship. Similarly, the Left Executive Network is influenced by the Default
Mode Network, receiving transitions with a probability of 0.18 and transitioning
back with a probability of 0.29, reflecting cyclical interactions.

Gray Matter Network 1 has significant incoming transitions from the Motor Network
(0.34) and transitions mainly to the Right Executive Network (0.23), emphasizing
its connection with motor and executive functions. Gray Matter Network 2 re-
ceives the highest incoming transitions from the Default Mode Network (0.23) and
predominantly transitions to the Motor Network (0.27), coordinating with motor
functions.
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4.3 Average transition probabilities matrix

Figure 4.37: Average transition probabilities matrix of network component across all
subjects.

The matrix, where each color shows the transition probabilities between brain
networks, reveals distinct patterns of connectivity. The highest probability indicates
most connectivity between brain networks, the strongest connectivity between brain
networks is as follows, in order:

The Default Mode Network is notably connected to the Motor Network, with
significant incoming and outgoing transitions, suggesting a strong flow of activity
between introspective and motor functions. The Motor Network, heavily influenced
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by Gray Matter Network 1, highlights the coordination of motor activities with
gray matter regions. The Visual Network shows a strong link with the Motor
Network, connecting visual stimuli to the brain's default state. Additionally, the
Default Mode Network exhibits robust connectivity with both the Visual and Left
Executive Networks, indicating frequent transitions. Both Right and Left Executive
Networks exhibit reciprocal relationships with the Default Mode Network, reflecting
cyclical interactions. The Visual Network also connects significantly with Gray
Matter Network 1. Gray Matter Network 2 are significantly connected to motor and
executive functions, coordinating activities between these regions. Moreover, the
Default Mode Network shows strong connectivity with the Motor Network. Gray
Matter Network 1 shows strong connectivity with the Right Executive Network.



Chapter 5

Discussion

In this chapter, the implications of the findings from the previous chapters are
discussed, highlighting their significance in understanding brain connectivity and
functionality. Additionally, the limitations and challenges encountered during the
study are addressed, and potential future research directions are proposed.

5.1 Implications of Findings

The graph demonstrates a rich, interconnected network of transitions between the
ICA components. Each component exhibits significant outgoing and incoming
transitions, indicating dynamic interactions among different brain states. Higher
transition probabilities between certain components suggest frequent switches and
stronger connectivity, providing insights into neural processes and brain functionality.
Analyzing these transitions and their probabilities is crucial for understanding the
temporal dynamics of brain activity. By modeling transitions through an FSM,
this study offers a comprehensive view of functional state changes, enhancing
our understanding of neural connectivity and its implications for cognitive and
behavioral functions.

5.1.1 Functional connectivity of network component across all subjects

The study's findings have several important implications for the field of neuroimag-
ing and brain connectivity research. The successful application of Multi-Echo
Independent Component Analysis (ME-ICA) and the construction of a Finite State
Machine (FSM) to model brain state transitions provide a deeper understanding of
the brain's dynamic functional connectivity.

According to Finite State Machine of network component across all subjects the
result for the most transition in each component is:

The Default Mode Network is notably connected to the Motor Network, with
significant incoming and outgoing transitions, suggesting a strong flow of activity

59



CHAPTER 5. DISCUSSION 60

between introspective and motor functions. The Motor Network, heavily influenced
by Gray Matter Network 1, highlights the coordination of motor activities with
gray matter regions. The Visual Network shows a strong link with the Motor
Network, connecting visual stimuli to the brain's default state. Additionally, the
Default Mode Network exhibits robust connectivity with both the Visual and Left
Executive Networks, indicating frequent transitions. Both Right and Left Executive
Networks exhibit reciprocal relationships with the Default Mode Network, reflecting
cyclical interactions. The Visual Network also connects significantly with Gray
Matter Network 1. Gray Matter Network 2 are significantly connected to motor and
executive functions, coordinating activities between these regions. Moreover, the
Default Mode Network shows strong connectivity with the Motor Network. Gray
Matter Network 1 shows strong connectivity with the Right Executive Network.

Totally, The connectivity between the Default Mode Network and Motor Network,
as well as between the Motor Network and Gray Matter Network 1, are particularly
notable and highest for their higher transition probabilities.

Also, the analysis of average time spent in each brain network is shown that the Motor
Network shows the highest engagement at 0.21, emphasizing its predominant role.
The Default Mode Network follows with 0.18, indicating its involvement in functions
like mind-wandering. Both Gray Matter Network 1 and the Left Executive Network
exhibit significant cognitive engagement at 0.14. The Visual Network, with 0.13,
underscores its critical role in visual tasks. Gray Matter Network 2 shows moderate
activity at 0.12, while the Right Executive Network has the lowest engagement at
0.11.

5.1.2 Inter-Subject Variability of Functional connectivity

In examining the transition probabilities among different ICA components across
multiple subjects, certain patterns of consistency and variability emerged when
considering the two highest transition probabilities for each network.

• Outgoing Transitions:

For the Default Mode Network, transitions to the Motor Network and Gray Matter
Network 2 were consistently high across subjects. In four subjects, the highest
outgoing transitions were to the Motor Network, and in three subjects, to the Gray
Matter Network 2, indicating moderate consistency in outgoing transitions.

In the Motor Network, transitions to the Visual Network and Gray Matter Network 1
were consistently high across subjects. Four subjects showed the highest outgoing
transitions to the Visual Network, and three subjects to the Gray Matter Network 1,
demonstrating strong consistency.

For the Visual Network, transitions to the Default Mode Network and Gray Matter
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Network 1 were consistently high. Four subjects showed high outgoing transitions
to the Default Mode Network and three to the Gray Matter Network 1, indicating
high consistency.

The Right Executive Network exhibited more variability in outgoing transitions,
with different subjects showing high transitions to networks such as the Visual
Network, Motor Network, and Gray Matter Network 1.

The Left Executive Network showed notable consistency in outgoing transitions to
the Default Mode Network and Motor Network, with three subjects showing high
transitions to the Default Mode Network and two to the Motor Network.

The Gray Matter Network 1 had high outgoing transitions to the Motor Network
and Visual Network in four subjects, indicating strong consistency. The Gray Matter
Network 2 exhibited more variability, with notable transitions to the Motor Network
and Gray Matter Network 1 in different subjects.

• Incoming Transitions

For the Default Mode Network, the Visual Network and Gray Matter Network 2 were
consistent sources of incoming transitions across subjects. Three subjects showed
the highest incoming transitions from the Visual Network, and two from the Gray
Matter Network 2, indicating moderate consistency.

In the Motor Network, Gray Matter Network 1 and Gray Matter Network 2 were
consistent sources of incoming transitions. Four subjects showed the highest
incoming transitions from Gray Matter Network 1, and three from Gray Matter
Network 2, suggesting strong consistency.

For the Visual Network, Motor Network and Default Mode Network were predomi-
nant sources of incoming transitions across subjects, showing high consistency with
four subjects showing high transitions from the Motor Network and three from the
Default Mode Network.

The Right Executive Network showed more variability in incoming transitions, with
different subjects showing high transitions from networks such as Gray Matter
Network 1, Gray Matter Network 2, and Motor Network.

The Left Executive Network received consistent incoming transitions from the
Default Mode Network and Gray Matter Network 1. Three subjects showed high
incoming transitions from the Default Mode Network, and two from the Gray Matter
Network 1, indicating moderate consistency.

For the Gray Matter Network 1, Motor Network was a consistent source of incoming
transitions in four subjects, demonstrating strong consistency. The Gray Matter
Network 2 had more variability, with notable incoming transitions from the Default
Mode Network and Visual Network.
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Finally, while some networks like the Motor Network and Visual Network showed
high consistency in their outgoing and incoming transitions, others like the Right
Executive Network displayed more variability, indicating a mix of consistent and
variable interaction patterns across subjects. This analysis suggests that while certain
networks exhibit stable connectivity patterns, there is notable inter-subject variability
in others.

The Default Mode Network also exhibited moderate consistency with frequent
outgoing transitions to the Motor Network and incoming transitions from the Visual
Network. The Left Executive Network demonstrated notable consistency in outgoing
transitions to the Default Mode Network and Motor Network. Also, The Gray Matter
Network 1 showed strong consistency in both outgoing and incoming transitions,
especially with the Motor Network. However, The Gray Matter Network 2 had more
variability, with transitions often involving the Motor Network and other networks
in different subjects.

5.1.3 Implications for neuroscience

The observed connectivity patterns between various brain networks have significant
implications for understanding cognitive functions and their underlying neural
mechanisms. The strong connection between the Default Mode Network (DMN) and
the Motor Network, indicated by high transition probabilities, suggests that there is
a dynamic interplay between introspective thought processes and motor functions.
This could imply that even when at rest, the brain is preparing for or transitioning
to motor activities, highlighting the brain's readiness to engage in physical actions.

The Motor Network's heavy influence by Gray Matter Network 1 underscores the
coordination of motor activities with gray matter regions, which are crucial for
integrating sensory information and executing motor functions. The strong link
between the Visual Network and the Motor Network suggests that visual stimuli are
closely tied to motor responses, emphasizing the importance of visual processing in
guiding movements.

Additionally, the robust connectivity of the DMN with both the Visual and Left
Executive Networks suggests frequent transitions between introspective or default
states and active cognitive processing. This indicates that the brain regularly shifts
between a resting state and engagement in visual and executive functions, which
could be crucial for tasks requiring both planning and visual-spatial processing.

The reciprocal relationships between the Right and Left Executive Networks with
the DMN reflect cyclical interactions, which are essential for maintaining cognitive
flexibility and adaptability. The significant connection between the Visual Network
and Gray Matter Network 1 further highlights the integration of sensory information
with higher-order processing regions.
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Gray Matter Network 2's connectivity with motor and executive functions suggests
its role in coordinating complex activities that require both movement and decision-
making. The strong connectivity between the Default Mode Network and the
Motor Network, as well as between the Motor Network and Gray Matter Network 1,
underscores their pivotal roles in linking cognitive states with physical actions.

In summary, these findings illuminate the intricate network of interactions be-
tween different brain regions, suggesting that cognitive functions such as planning,
decision-making, and motor coordination are deeply interconnected. The frequent
transitions between the DMN and executive networks may facilitate efficient cog-
nitive processing, enabling the brain to switch seamlessly between rest and active
states, thereby supporting both reflective thought and goal-directed behavior. These
insights can inform further research into how these network dynamics may be
altered in neurological disorders and could guide the development of interventions
to enhance cognitive and motor functions.

5.2 Limitations and Challenges

Despite the study's successes, several limitations and challenges were encountered
that should be addressed in future research.

1. Limited Sample Size:

The study was conducted with data from 20 subjects, of which only 6 were selected
for further analysis due to data quality issues. This limited sample size may affect
the generalizability of the findings. Future studies should aim to include a larger
and more diverse sample to validate and expand upon these results.

2. Data Quality and Preprocessing:

Ensuring high-quality fMRI data is critical for accurate analysis. Issues
such as head motion, physiological artifacts, and scanner noise can
affect the results. While advanced denoising techniques were employed,
there is always a trade-off between data cleaning and the retention of
meaningful signals. Further improvements in preprocessing methods
are needed to minimize these challenges.

3. Complexity of ME-ICA:

Although ME-ICA offers significant advantages, its complexity and
computational demands can be challenging. The need for specialized
software and expertise may limit its widespread adoption. Simplifying
the analysis pipeline and improving user-friendly tools will be essential
for broader utilization.
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5.3 Future Research Directions

Building on the findings and addressing the limitations of the current study, several
future research directions are proposed.

1. Expanding the Sample Size:

Future studies should aim to include a larger and more diverse cohort of
subjects to enhance the generalizability of the findings. This will provide
a more comprehensive understanding of brain connectivity patterns
across different populations.

2. Longitudinal Studies:

Longitudinal studies tracking changes in brain connectivity over time
will provide valuable insights into the dynamics of neural networks
and their relationship with cognitive functions and neurological disor-
ders. Understanding how connectivity patterns evolve can aid in early
diagnosis and intervention.

3. Integration with Other Modalities:

Combining fMRI data with other neuroimaging modalities, such as elec-
troencephalography (EEG) and magnetoencephalography (MEG), can
provide a more holistic view of brain function. Multimodal approaches
can help to cross-validate findings and offer a deeper understanding of
the underlying neural mechanisms.

4. Development of Advanced Algorithms:

Continued development and refinement of denoising and analysis al-
gorithms are essential. Improving the accuracy and efficiency of these
methods will enhance the reliability of fMRI studies. Incorporating
machine learning techniques to automate and optimize the analysis
pipeline could also be a valuable direction.

5. Clinical Applications:

Translating the findings from this study into clinical applications is a
critical future direction. Developing diagnostic tools and therapeutic
strategies based on functional connectivity patterns could revolutionize
the management of neurological and psychiatric disorders.

6. Exploration of Low-Frequency Activity:

The ability of ME-ICA to detect low-frequency BOLD signals presents
an opportunity for future research on the effects of pharmacological
interventions, learning, and other long-term processes on brain function.
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Investigating these low-frequency activities could provide new insights
into brain plasticity and adaptation.



Chapter 6

Conclusion

This study does Finite State Machine (FSM) modeling to reveal dynamic functional
connectivity in the brain, highlighting key transition patterns across multiple
networks. Results show that while all brain networks are functional connectivity,
the connectivity between the Default Mode Network and Motor Network, as well as
between the Motor Network and Gray Matter Network 1, are particularly notable
and highest for their higher transition probabilities. Also, findings indicate the
intricate network of interactions between different brain regions, suggesting that
cognitive functions such as planning, decision-making, and motor coordination are
deeply interconnected. The frequent transitions between the DMN and executive
networks may facilitate efficient cognitive processing, enabling the brain to switch
seamlessly between rest and active states, thereby supporting both reflective thought
and goal-directed behavior. These insights can inform further research into how
these network dynamics may be altered in neurological disorders and could guide
the development of interventions to enhance cognitive and motor functions.

Moreover, the analysis reveals that the Motor Network has the highest involvement
in brain activity, followed by the Default Mode Network, Gray Matter Network 1,
Left Executive Network, and the Visual Network. Gray Matter Network 2 shows
moderate activity, while the Right Executive Network has the lowest involvement.
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